[HERMES]>>[解析の情報]>>[RIETAN]>>[ins fileの解説]

入力ファイル .insの見方の解説

update : 15-JUN-2005


ここでは、Rev2以降のRIETAN2000の入力ファイル、****.insの見方を解説します。
赤文字は私がいれたコメント文、緑字は重要なパラメーターで、ご自分の解析の際は修正が必要です。
入力行黒字はもとのINSファイルの文です。

なお、一番下に、RIETAN2000の使用条件が書いてあります。必ず守りましょう。

注意:html化のために、一部修正があります。このままコピーペーストしても使えない可能性があります。



INSファイルの例(Rev2...以降)


#以下の20行くらいはコメント文のいれかたについての説明です。
# This is a template file for RIETAN-2000 for angle-dispersive X-ray and neutron
# diffraction.

# Many comments are sprinkled in this file for beginners. Power users may
# delete part of them to shorten it. Addition of memorandums is also fine.
# Comments can be input in the following manner:

# (1) # comment
# (2) Comment {
# (3) } comment
# (4) Variable name = value: comment
# (5) Variable name = value! comment

# Form (1) may in input from the middle of a line. Lines with a top character
# of '#' or forms (2) and (5) are regarded as comment lines as a whole.
# Form (2), which is usually used in combination with form (3), is optional;
# that is, it is a mere comment line without any effect during refinement.
# Form (3) is used to indicate the end of a series of input lines. Variable
# names in Forms (4) and (5) should appear only once in one file. The first
# character of an integer variable should be I, J, K, L, M, or N whereas that
# of a real variable capital letters other than these characters.
#コメントの入れ方の説明はここまで

# Title (CHARACTER*80)
# 次の行は、このinsファイルで行う計算のタイトルになる。
Si NIST640c i(5.4311946A)
#省略してもよいが、タイトルはOUTPUTファイルに記録されるので、整理の際に便利


# This template file for three-phase Rietveld refinement was kindly presented by
# A. A. Belik.
# The background is rather high because of inclusion of Fe.
# Refer to A. A. Belik, K. V. Pokholok, A. P. Malakho, S. S. Khasanov, and
# B. I. Lazoryak, Rus. J. Inorg. Chem. 45 (2000) 1494.

#NBEAMで中性子とX線を区別する。HERMESの場合は、当然NBEAM = 0
NBEAM = 0: Neutron powder diffraction.
NBEAM = 1!: Conventional X-ray powder diffraction with characteristic X rays.
NBEAM = 2! Synchrotron X-ray powder diffraction.

#Fittingをするか、単にシミュレーションをするかの選択
#NMODE = 0でFittingを行う。
#NMODE = 1のときはinsの一部書き換えが必要
NMODE = 0: Rietveld analysis of powder diffraction data.
NMODE = 1! Calculation of powder diffraction intensities (plus simulation).
NMODE = 2! Total-pattern fitting where structure factors are fixed at Fc(MEM)'s.
NMODE = 3! The same as NMODE = 2 but refine |Fc|'s for relaxed reflections.
NMODE = 4! Conventional Le Bail analysis.
NMODE = 5! Le Bail analysis using a partial structure.
NMODE = 6! Individual profile fitting.

#NPRINTで、計算途中の記録をどの程度詳しく残すかを選択
#たいていはNPRINT = 0でいいが、指数の表がほしいときはNPRINT = 1にする。
NPRINT = 0! Minimal output.
NPRINT = 1! Standard output.
NPRINT = 2! Detailed output.
NPRINT = 0

#ここでHERMESの波長、セルの直径、試料密度を指定
If NBEAM = 0 then
XLMDN = 1.82035: Neutron wavelength/Angstrom.
RADIUS = 0.35: Radius/cm of the cylindrical cell.
ABSORP = 1.15! Positive --> Density/g.cm-3 of the sample.*
ABSORP = 0.0: Zero --> Neglect absorption.
ABSORP = -1.0! Negative --> -(Linear absorption coefficient)*(radius).
# * Calculated from the inner diameter, height, and mass of the sample.

else if NBEAM = 1 then
NTARG = 1! Ag K_alpha radiation.
NTARG = 2! Mo K_alpha radiation.
NTARG = 3! Cu K_beta radiation.
NTARG = 4: Cu K_alpha radiation.
NTARG = 5! Co K_alpha radiation.
NTARG = 6! Fe K_alpha radiation.
NTARG = 7! Cr K_alpha radiation.

R12 = 0.0: Intensity(K-alpha2)/Intensity(K-alpha1). R12 = 0.0 for Cu K_beta radiation.
CTHM1 = 0.799: (cos(2*alpha))**n for the monochromator.*
# * alpha: Bragg angle of the monochromator. CTHM1 = 1.0 if no monochromator is installed.

NSURFR = 0: Do not correct for surface roughness.
NSURFR = 1! Correct for surface roughness by combining NSURFR = 2 and 3.
NSURFR = 2! Correct for surface roughness with Sparks et al.'s model.
NSURFR = 3! Correct for surface roughness with Suortti's model.
NSURFR = 4! Correct for surface roughness with Pitschke et al.'s model.

NTRAN = 0: Bragg-Brentano geometry (conventional divergence slit).
NTRAN = 1! Bragg-Brentano geometry (automatic divergence slit*).
NTRAN = 2! Transmission geometry (e.g., Guinier diffractometer).
NTRAN = 3! Debye-Scherrer geometry.
# * This slit gives variable divergence angles and a fixed irradiation width.
else if NBEAM = 2 then
XLMDX = 1.5401: X-Ray wavelength/Angstrom.
PCOR2 = 0.05: I0(perpendicular)/I0(parallel). I0: incident intensity.
# Refer to D.E. Cox, "Synchrotron Radiation Crystallography," ed by
# P. Coppens, Academic Press, London (1992), p. 233.
CTHM2 = 1.0: cos(2*alpha)**2 for the crystal monochromator (see above).
XMUR2 = 0.0: (Linear absorption coefficient)*(radius).
end if

If NBEAM = 1 and NTRAN = 1 then
DSANG = 0.5: Angle/degree of the divergence slit at the minimum 2-theta.
RGON = 185.0: Goniometer radius/mm.
SWIDTH = 20.0: Irradiation width/mm for the sample.
else if NBEAM = 1 and NTRAN = 2 then
PCOR1 = 0.5: Fraction of the perfect crystal contribution.
SABS = 1.0: (Linear absorption coefficient)*(effective thickness).
else if NBEAM = 1 and NTRAN = 3 then
XMUR1 = 0.0: (Linear absorption coefficient)*(radius).
end if

If NBEAM = 0 then
# Real neutral chemical species, amounts of substances, plus '/'. Names of
# 'real chemical species' are recorded in the database file asfdc. The
# amounts of substances are used to calculate absorption factors. When
# magnetic scattering is observed, attach '*' to magnetic atoms if any,
# e.g., 'Fe*' and 'Mn*'.
#吸収補正のために組成比を入力する。含まれる元素をすべて書かないとエラーになる。
#*がつくのは磁気構造解析をする場合のみ。結晶構造だけの場合は磁性原子を含んでいても*はつけてはいけない。
'Si' 1.0 /

#以下の説明は、磁気構造解析をする場合のもの。結晶構造だけの場合は磁性原子を含んでいても無視していい。
# Input LCMFF (= 0) and CMFF(I) (I = 1-7) for magnetic atoms attached with
# '*." LCMFF and CMFF corresponds to l and seven coefficients in Eqs.
# (4.4.5.2) and (4.4.5.3) in "International Tables," Vol. C (1999), p. 456.
# The total number of these lines equals the number of magnetic atoms.
# The following line is input for Fe2+ (l = 0):
# 0 0.0263 34.960 0.3668 15.943 0.6188 5.594 -0.0119
# '}' is unnecessary because the number of atoms attached with '*." has
# already been known.
else if NBEAM >= 1 then
# Real chemical species plus '/'.
# Refer to the data base file asfdc for chemical species to be input here.
'O-' 'P' 'Fe3+' 'Cu2+' /
end if

If NBEAM = 0 then
# Skip
else if NBEAM = 2 or NTARG = 3 then
# Read pairs of anomalous dispersion corrections, Delta-f' and Delta-f''.
# Input statements in RIETAN: READ(5,*) (DELTF1(J), DELTF2(J), J=1, NREAL).
# NREAL: Number of real chemical species.
# Neither '/' nor '}' is required bacause the number of input data (2*NREAL)
# has been already known.
end if

#以下の説明は、仮想的な原子を使いたい時のもの。「仮想的な原子ってなによ?」、と思ったのなら無視してよし。
# When a site is occupied by two or more chemical species as in solid
# solutions, supposing an 'virtual' chemical species where these chemical
# species are mixed with each other in definite amount-of-substance
# fractions (total = 1) serves to decrease the total number of sites.
# Of course, such virtual species can be used only when their occupancies
# are fixed. Input one virtual species plus '/' per line and '}' (plus comment)
# in the last line in the following way:

#普通はこの下の行は使わないので、気にしない。
# Virtual chemical species
# 'M1' 'Ba' 0.633 'Nd' 0.367 / # Metal on the rock-salt layer
# 'M2' 'Nd' 0.675 'Ce' 0.325 / # Eight-coordinated atom in the fluorite block
# } End of virtual chemical species.

# 'M1' and 'M2' are names of virtual chemical species, 'Ba', 'Nd,' and 'Ce' are
# names of real chemical species input above, and numbers are amount-of-
# substance fractions of constituent elements. For the above species, Refer to
# F. Izumi et al., Physica C 160 (1989) 235.
# When no virtual species are used, all the lines must be commented out.

Data concerning crystalline phases contained in the sample {

#ここから下はすごく大事な情報で、書き換え必須
# Phase No. 1

#相の名前を入力、単一相のFIttingでも必要。多相Fittingなら、この名前でパラメーターを区別できる。
PHNAME1 = 'Si': Phase name (CHARACTER*25).

#第1相の対称性を番号で指定。番号はInternational Tableを探す。
#Settingを指定するときは、A-227-2など
VNS1 = 'A-227': (Vol.No. of Int.Tables: A or I)-(Space group No)-(Setting No).

LSPSYM1 = 0: Information on the space group is read from the data base.
LSPSYM1 = 1! In addition to LSPSYM = 0, reflection conditions are specified.
LSPSYM1 = 2! A non-standard axes-setting method is adopted.
# Additional input data are required when SSPSYM1 > 0 but not described here
# because of its rare use.

If NBEAM >= 1 then
LPAIR1 = 0: No Bijvoet pairs (hkl & -h-k-l) are generated.
LPAIR1 = 1! Bijvoet pairs (hkl & -h-k-l) are generated.
# Set at 0 in a centrosymmetric space group. Note that in 24 centrosymmetric
# space groups, e.g., origin choice 1 for Pnnn (No. 48), descriptions with
# points of higher symmetry as origin are also provided. Setting this value
# at 0 for a noncentrosymmetric space group increases the calculation speed
# with lowering accuracy of structure factors.
end if

INDIV1 = 0! The overall isotropic atomic displacement parameter is input.
INDIV1 = 1: Atomic displacement parameters are assinged to all the sites.
# Neither B's nor beta_ij's are input if INDIV1 = 0. Input zero for the
# overal isotropic atomic displacement parameter, Q, when INDIV1 = 1.

# Correction of perferred orientation
NPROR1 = 0!: Preferred orientation is not corrected for.
NPROR1 = 1! Sasa-Uda function for plate crystals.
NPROR1 = 2! Sasa-Uda function for needle-like crystals.
NPROR1 = 3: March-Dollase function.*
# * Note that the preferred orientation effect disappears in March-Dollase
# function when r = 1.

#へき開面の法線ベクトルの指定。劈開があるなら立方晶でも必要。
IHP1 = 1: \
IKP1 = 1: --> Preferred-orientation vector, hp, kp, lp.
ILP1 = 1: /

# The preferred-orientation vector should be set in such a way that it is
# a reciprocal-lattice vector, hpa* + kpb* + lpc*, perpendicular to a cleavage
# plane for a plate crystal and parallel with an extention direction for a
# needle-like crystal. They are dummies when NPROR1 = 0.

LSUM1 = 0! No summation when calculating the March-Dollase function.
LSUM1 = 1: Summation when calculating the March-Dollase function.*
# * Required when the symmetry is cubic, or the preferred-orientation vector
# does not lie along the unique axis. Dummy unless NPROR1 = 3.

IHA1 = 0: \
IKA1 = 0: --> Anisotropic-broadening axis, ha, ka, la.
ILA1 = 1: /
# They are dummies when parameters related to anisotropic profile
# broadening are set at null.

# Place '}" (+ comment) after the input of information on all the phases.
} End of information about phases.

#ピーク形状関数の選択:HERMESならNPRFM=2がよいみたいです。
# Selection of the profile function.
NPRFN = 0! Pseudo-Voigt function of Thompson et al.*
NPRFN = 1! Split pseudo-Voigt function of Toraya.**
NPRFN = 2! Modified split pseudo-Voigt function*** for Relaxed reflections.
NPRFN = 3! Split Pearson VII function of Toraya.**
# * P. Thompson et al., J. Appl. Crystallogr. 20 (1987) 79.
# ** H. Taraya, J. Appl. Crystallogr., 23 (1990) 485.
# *** FWHM(Lorentz) <> FWHM(Gauss). The split pseudo-Voigt function is
# applied for the other reflections. Refer to the following paper:
# F. Izumi and T. Ikeda, Mater. Sci. Forum, 321-324 (2000) 198.
NPRFN = 2

If NPRFN = 0 then
NASYM = 0! Made asymmetric according to the procudure of Finger et al.*
NASYM = 1! Made asymmetric according to the procudure of Howard.**
# * L. W. Finger et al., J. Appl. Crystallogr. 27 (1994) 892.
# ** C. J. Howard, J. Appl. Crystallogr. 15 (1982) 615.
NASYM = 1
end if

If NPRFN >= 1 then
# Selection of the peak-shift function.
# t0 - t3: Peak-shift parameters; x: 2-theta.
NSHIFT = 0! t0.
NSHIFT = 1! t0 + t1*cos(x) + t2*sin(x) + t3*tan(theta).
NSHIFT = 2! t0 + t1*x + t2*x^2 + t3*x^3.
NSHIFT = 3! t0 + t1*tan(theta) + t2*(tan(theta))^2 + t3*(tan(theta))^3.
NSHIFT = 4: Legendre polynomials where 2-theta is normalized as -1 to 1.
NSHIFT = 5! Legendre polynomials where tan(theta) is normalized as -1 to 1.
end if

# Labels (CHARACTER*25), parameters, A(I), to calculate diffraction intensities,
# and refinement identifiers, ID(I). ID(I)'s are input without inserting any
# spaces between them only when NMODE = 0 (no problem even if they are input
# when NMODE = 1).

# In what follows, PPP and SPP denote a primary profile parameter and a
# secondary profile parameter, respectively. For example, when calculating
# the FWHM, H, with the equation H = [U(tan(theta)**2 + Vtan(theta) + W]^0.5,
# H is a PPP, the FWHM parameters U, V, and W are SPPs. In conventional
# Rietveld analysis, SPP's which are common to the whole 2-theta range are
# refined whereas PPPs are locally refined for relaxed reflections.

# ID(I) = 0: Fix parameter A(I) at the value input by the user.
# ID(I) = 1: Refine parameter A(I).
# ID(I) = 2: Impose a constraint to parameter A(I).
# ID(I) = 3: Fix a PPP at the value calculated from SPP's.
# If A(I) is set at zero by the user, A(I) is calculated from the SPP's in each
# cycle. In this case, if A(I) should actually be fixed at zero, input a value
# which is nearly zero, e.g., 10^(-15).

# Relations between ID(I)'s, NPRFN, and partial profile relaxation:
# (1) Partial profile relaxation cannot be used when NPRFN = 0.
# (2) ID(I)'s are 1-3 when NPRFN = 1, 3 under partial profile relaxation.
# (3) ID(I)'s are 1 or 2 when NPRFN = 2 under partial profile relaxation.

Label, A(I), and ID(I) now starts here {

# (1) Parameters common to all the phases.

# Peak-shift parameters.
# NPRFN = 0: Z, Ds, Ts & dummy1 (Ds = Ts = 0 in neutron diffraction).
# NPRFN > 0: t0, t1, t2 & t3.

#散乱角の0点補正のパラメーター。普通は+-0.1度程度
If NPRFN = 0 then
SHIFT0 0.0 8.02917E-3 0.0 0.0 0000
else
SHIFTN -1.811E-1 -3.53575E-3 0.0 0.0 1000
end if

# Surface-roughness parameters.
ROUGH 0.0 0.0 0.0 0.0 0000

# Background parameters, b_j (j = 0-11).
#バックグランドのパラメーター。普通は初めの8個で十分。よくあってきたら固定してもよい。
BACKGROUND 512.728 -8.20552 95.7827 -5.75895E1 73.5675 -2.38242E1
-7.24074E1 -5.97001E1 20.9415 -1.09363E1 -6.62261E1
-7.08504E1 111111110000


# PPP's of relaxed reflections (input as requied. May be lacking).
# Format of each label: PPPn_h.k.l (n: phase number, hkl: diffraction index).

# PPP's refined in relaxed reflections:
# NPRFN = 1 (split pseudo-Voigt function): W, A, eta_L, eta_H.
# NPRFN = 2 (modified split pseudo-Voigt function): W1, W2, A, eta_L, eta_H.
# NPRFN = 3 (split Pearson VII function): W, A, mL, mH.

#プロファイル緩和法を使う場合は以下でコントロールする。でも最初は使う必要なし。
# PPP1_3.1.1 1.00412 0.370161 0.953936 7.67088E-2 4.60681E-2
# 11111
# 下の4.0.0は 400ブラッグピークで緩和を行う、という意味
# PPP1_4.0.0 0.84914 0.396528 0.997276 9.17828E-2 0.122953 11111
# PPP1_3.3.1 1.78806 0.434337 0.923789 0.115391 0.100643 11111

# (2) Parameters for the first phase, Si

# Scale factor, s.
#強度を決めるスケール因子。最初から、そして常に動かす。
SCALE 2.01239E-3 1

# Profile parameters.

If NPRFN = 0 and NASYM = 1 then

# TCH's pseudo-Voigt function made asymmetric by Howard's method.

# FWHM parameters of the Gauss function, U, V, W, and P.
GAUSS01 1.10418E-2 -6.28828E-3 2.66182E-3 0.0 1110

# FWHM parameters of the Lorentz function, X, Xe, Y, and Ye.
LORENTZ01 3.90935E-2 0.0 4.06713E-2 0.0 0000

# Asymmetry parameter, As, plus five dummies.
ASYM01 3.08666E-2 0.0 0.0 0.0 0.0 0.0 100000

else if NPRFN = 0 and NASYM = 0 then

# TCH's pseudo-Voigt function made asymmetric by Finger et al.'s method.

# FWHM parameters of the Gauss function, U, V, W, and P.
GAUSS00 1.49395E-4 1.41366E-4 2.07988E-4 0.0 0000

# FWHM parameters of the Lorentz function, X, Xe, Y, and Ye.
LORENTZ00 3.3918E-2 1.85408E-3 2.48941E-2 -1.11746E-3 0000

# Asymmetry parameters, rs and rd, plus four dummies.
ASYM00 2.82968E-2 9.34981E-3 0.0 0.0 0.0 0.0 000000

else if NPRFN = 1 or NPRFN = 2 then

# Non-relaxed reflections: split pseudo-Voigt function
# Relaxed reflections: Modified split pseudo-Voigt function.

# 半値幅パラメーター, U, V, W, a dummy.
#分解能(半値幅)を決めるパラメーター。解析のはじめは動かさなくてよい。強度があってきてから。
#動かす場合は、UVWのみ。
FWHM12 0.268966 -4.50787E-1 0.293094 0.0 1110

# 非対称パラメーター, a0, a1, a2, a dummy.
#ピークの非対称性をコントロール。最初は動かさなくてよい。invalid valueとかメッセージがでて計算がとまったら、このあたりの値をいじってみる。
ASYM12 0.898275 -1.19619 0.109714 0.0 0000

# Decay parameters, eta_L0, eta_L1, eta_H0, and eta_H1.
#ピークの減衰をコントロール。最初は動かさなくてよい。invalid valueとかメッセージがでて計算がとまったら、このあたりの値をいじってみる。
DECAY12 7.67779E-2 0.210163 0.4074 0.150957 0000

# Asymmetric-broadening parameters, Ue and Pe.
ANISOBR12 0.0 0.0 00

else if NPRFN = 3 then

# Split Pearson VII function

# FWHM parameters, U, V, W, plus a dummy.
FWHM3 5.874843E-3 -2.614835E-3 5.290567E-3 0.0 0000

# Asymmetry parameters, a0, a1, and a2, plus a dummy.
ASYM3 0.976399 0.184397 -4.801547E-2 0.0 0000

# Decay parameters, eta_L0, eta_L1, eta_H0, and eta_H1.
M3 0.712220 0.219749 0.630807 0.125848 000

# Asymmetric-broadening parameter, Ue and Pe.
ANISOBR3 0.0 0.0 00

end if

# Preferred-orientation parameter, r, dummy9 (March-Dollase function);
# p1, p2 (Sasa-Uda function).
#選択配向のパラメーター。通常は1に固定して大丈夫。
#もし選択配向をとりいれる場合は、1番目のパラメータのみうごかす。1で選択配向なし。普通は0.8~1.2位
PREF1 1.0 0.0 00


#ここから本当の構造パラメーターの定義
# Lattice parameters, a, b, c, alpha, beta, & gamma.
# Overall isotropic atomic displacement parameter, Q.
#かならず動かす。ただし、立方晶ならaだけ、正方晶ならaとcだけ、をうごかす。この例は立方晶
CELQ 5.43346 5.43346 5.43346 90.0 90.0 90.0 0.0 1000000

# Lable/(chemical species name), occupancy (g) , fractional coordinates
# (x,y,z), istropic atomic displacement parameter (B), ID(I)'s.
# One label is given to each site. 'Chemical species' include virtual ones
# (should not enclosed by ' '). On the calculation of anisotropic atomic
# displacement parameters, input beta_11, beta_22, beta_33, beta_12,
# beta_13 and beta_23. If a dummy '+' is input just before the value of B,
# RIETAN will determined the corresponding beta_ij. Of course, six ID(I)'s
# must be input in this case.

# Label/species, g, x, y, z, B, and refinement identifiers (ID)
#占有率と原子位置、変位パラメーター。この例だと(0,0,0)。
#自由度があっても初めは動かさなくてよい。
#Bは最初は0.3位にしておく
Si/Si 1.0 0.0 0.0 0.0 0.517761 00001
#

} End of lines for label/species, A(I), and ID(I)
#以上で、本質的なパラメータの入力はおわり。
#以下は主に、計算をコントロールするパラメータの入力。


# If two or more phases are included in the sample, repeat the input of
# parameters (scale factor or later) after structure parameters in the
# previous phase. Do not enter labels that have already been input.

If NMODE <> 1 then
# Input linear constraints for parameters with ID(I) = 2. A parameter with
# ID(I) = 2 is place at the left side, and equations to calculate it from other
# parameters with ID = 1. "Linear" means that the equation is linear with
# respect to parameters contained in the right side. Linear constraints can
# be imposed on PPPs, SPPs, and structure parameters. In the case of SPPs,
# the linear constraints are used to set SPPs for two or more phases equal
# to each other. Refer to the user's manual for the method of describing
# linear constraints.

# For example, linear constraints imposed among anisotropic atomic displacement
# parameters, beta_ij, are described in the following ways:
#パラメーター間に関係がある場合は、以下の式で指定する。原子位置のx,y,z間に関係がある場合に、
#xyzをパラメーターにfittingする場合は、かならず使う。


#下はB11のyとxに:y=x+0.5の関係がある場合。
#A(B11,y)=A(B11,x)+0.5
# A(X,B22)=A(X,B11) #5
# A(X,B22)=A(X,B11); A(X,B23)=A(X,B13) #6
# A(X,B22)=A(X,B11); A(X,B23)=-A(X,B13) #7
# A(X,B22)=A(X,B11) #8
# A(X,B33)=A(X,B22) #9
# A(X,B33)=A(X,B22); A(X,B13)=A(X,B12) #10
# A(X,B33)=A(X,B22); A(X,B13)=-A(X,B12) #11
# A(X,B33)=A(X,B22) #12
# A(X,B12)=0.5*A(X,B22) #13
# A(X,B12)=0.5*A(X,B22) #14
# A(X,B12)=0.5*A(X,B22); A(X,B23)=2.0*A(X,B13) #15
# A(X,B22)=A(X,B11); A(X,B12)=0.5*A(X,B11) #16
# A(X,B22)=A(X,B11); A(X,B33)=A(X,B11) #17
# A(X,B22)=A(X,B11); A(X,B33)=A(X,B11); A(X,B13)=A(X,B12); A(X,B23)=A(X,B12) #18
# where 'X' is a label (site name). Please replace it with another label.
# Comments ('#'+integer) at the tails of these lines denote reference numbers in
# W. J. A. M. Peterson and J. H. Palm, Acta Crystallogr. 20 (1966) 147.



# Place '}" + comment after the input of all the linear constraints.
# When no constraints are given, comment out them, including '}.'
} End of linear constraints.
end if

NCUT = 0! The profile range for relaxed reflections is determined by RIETAN.
NCUT = 1! The profile range for relaxed reflections is input by the user.
NCUT = 0
# NCUT = 0 when NPRFN = 0.

If NCUT = 1 then
# 2-theta ranges for the profiles of relaxed reflections in the same order
# as PPn_h.k.l+PPP. The total number of 2-theta pairs is equal to that of
# the PPn_h.k.l+PPP+ID lines. in the same order. No '}' is necessary
# because the number of the relaxed reflections has been already known.
5.10 9.40
11.00 14.10
18.20 21.80
19.40 24.10
21.60 23.40
end if

#不純物などのためデータを削除したい場合は、NEXC=1にする。
If NMODE <> 1 then
NEXC = 0!: Parameters are refined using all the data points.
NEXC = 1: Parameters are refined by excluding part of the data points.
end if

If NMODE <> 1 and NEXC = 1 then
2-theta range not to be used for the refinement {
#不純物などのためデータを削除したい場合は、下で除外したい角度範囲を指定
#シビアに計算したいときは、できるだけバックグランドを切っておく。
# 0.0 14.99
130.01 180.0
} End of excluded 2-theta ranges.
end if

#ここから下は、(NPHASE以外は)普通はいじる必要なし。
#でもいろいろ機能があるので、使えるようになると便利。

If NMODE <> 1 then
NRANGE = 0: Refine background parameters.
NRANGE = 1! Fix backgrounds at (interpolated) values at specified 2-theta's.
NRANGE = 2! Fix backgrounds of all the points at values in *.bkg.
NRANGE = 3! Background = (background in *.bkg) * (Legendre polynomials).
end if

# When NRANGE > 0, 2-theta and background pairs are read in from *.bkg.
# (1) NRANGE = 1
# If a background is zero, it is set at a smoothed value at that data point.
# Backgrounds at other data points are fixed at interpolated values. Such a
# manner is useful for the analysis of diffraction patterns where the number of
# reflections are relatively small and the background curve is complex, for
# example, having humps.
# List-directed READ statement in RIETAN-2000: READ(4,*) (X(J),Y(J), J=1,100).
# That is, we can input up to 100 diffraction points. To show the end of data
# points, place '/' after the last data point.
# (2) NRANGE = 2
# Input 2-theta and background pairs whose total number should be equal to
# that of observed diffraction intensities in *.int.
# List-directed READ statement in RIETAN-2000:
# READ(8,*,END=9) (DEG(J),BG(J), J=1,NP)
# (3) NRANGE = 3
# This composite background function is particularly useful for the Debye-
# Scherrer geometry where samples are charged in capillaries, which makes the
# shape of the background complex.

If NMODE <> 1 then
NPAT = 0! Output no file to plot Rietveld-refinement patterns.
NPAT = 1! Not implemented.
NPAT = 2! Ouput a RietPlot file to plot Rietveld-refinement patterns.
NPAT = 3! Not implemented.
NPAT = 4! Output a gnuplot text file to plot Rietveld-refinement patterns.
NPAT = 5: Output an Igor text file to plot Rietveld-refinement patterns.
# NPAT = 4 (every OS) or 5 (Mac OS and Windows) is recommended.
end if

If NMODE <> 1 and NPAT = 5 then
IWIDTH = 800: Width of the graph.
IHEIGHT = 400: Height of the graph.
IYMIN = 0: Minimum value for the y axis (default for zero).
IYMAX = 0: Maximum value for the y axis (default for zero).

LBG = 0: Do not plot the background.
LBG = 1! Plot the background.

# Kind of a residual curve
LDEL = 0: Plot Delta_y = (observed intensity - calculated intensity).
LDEL = 1! Plot Delta_y/(standard deviation).
LDEL = 2! Plot [Delta_y/(observed intenstiy)]/(standard deviation).*
# * Refer to Eq. (1.13) in R. A. Young, "The Rietveld Method," p. 24.

IOFFSETD = -800: Offset for the residual curve.
IPSIZE = 4: Length of tick marks to show peak positions.
IFSIZE = 16: Size of numerial values attached to the x and y axes.
ILSIZE = 18: Size of labels for axes.

INDREF = 0: Do not output waves XREF or YREF.
INDREF = 1! The profile of each reflection is output to waves XREF and YREF.

#グラフ中のピーク位置を示すtickのy方向の位置を決める。多相のときに調整がいるかも。
IOFFSET1 = 4400: Offset for tick marks (peak positions) for the first phase.
IOFFSET2 = 3200: Offset for tick marks (peak positions) for the second phase.
IOFFSET3 = 2000: Offset for tick marks (peak positions) for the third phase.
# If other phases are contained, input offsets in the above way.
/ # Place '/' if the number of phases whose ets are input is less than 8.

# You may also edit Igor procedures at the tail of *.itx with an editor.
end if

#シミュレーションの場合は次の行が必要。計算する角度範囲の指定
If NMODE = 1 then
DEG1 = 10.0: Minimum 2-theta in the calculated (simulated) pattern.
DEG2 = 60.0: Maximum 2-theta in the calculated (simulated) pattern.

USTP = 0.01: Step width/degree.

NPAT = 0! Only the reflection list is output.
NPAT = 1! Not implemented.
NPAT = 2! Output a RietPlot file to plot a simulated pattern.
NPAT = 3! Not implemented.
NPAT = 4! Output a gnuplot text file to plot a simulated pattern.
NPAT = 5: Output an Igor text file to plot a simulated pattern.
# NPAT = 4 (every OS) or 5 (Mac OS and Windows) is recommended.
end if

If NMODE = 1 and NPAT = 5 then
IWIDTH = 800: Width of the graph.
IHEIGHT = 400: Height of the graph.

LBG = 0: Plot no bakcground (fixed).

IPIZE = 3: Length of tick marks (peak positions).
IFSIZE = 12: Size of numerial values attached to the x and y axes.
ILSIZE = 14: Size of labels for axes.
end if

収束が悪いとき、Bが負になってしまうときは、PCを小さくすると改善するかもしれない
# PC: A constant to determine a 2-theta range for calculating profiles.
# PC < 1 ==> A region where the profile function exceeds peak intensity X PC.
# If NPRFN = 0, PC <1.
# PC > 1 ==> A region within peak position +/- FWHM*PC.
If NPRFN = 0 then
PC = 0.002
else if NPRFN = 1 then
PC = 15.00
else if NPRFN >= 2 then
PC = 15.00
end if

# Skip the remaining part if NMODE = 1
If NMODE = 1 then
Go to *Quit
end if

##############################################################################
# All the data have been input in the case of NMODE = 1. Bye! #
##############################################################################

If NMODE = 4 then
# Initial values of multiplicity X |Fc|**2 for the 1st phase are
NSFF = 0! estimated according to the Wilson statistics.
NSFF = 1! read in from *.ffi.
NSFF = 2! all set at 100.0.
NSFF = 0
end if

If NMODE = 4 and NSFF <> 1 then
INCMULT = 0! The integrated intensity is regarded as |F|**2.
INCMULT = 1! The integrated intensity is regarded as multiplicity X |F|**2.
INCMULT = 0

CHGPC = 1.0: Cut-off is at first set at CHGPC*PC.*
# * Restored when lattice or profile parameters are refined.
end if

If NMODE = 4 and NSFF = 1 then
NCONST = 0! |Fc|'s are varied during least-squares fitting.
NCONST = 1! |Fc|'s remain constant during least-squares fitting.*
# * |Fo|'s are calculated from final refined parameters.
NCONST = 0
end if

#最小二乗の計算方法。NLESQ=0か2がいいようです。0が標準ですが、発散してしまって腹が立ってきたら2も使います。
#ただし共役法は時間がかかります。
If NMODE <> 1 then
# Nonlinear least-squares methods
NLESQ = 0! Marquardt method (recommended in most cases).
NLESQ = 1! Gauss-Newton method.
NLESQ = 2! Conjugate-direction method (stable but very slow).
NLESQ = 0

NESD = 0: Standard deviations are estimated by the conventional method.
NESD = 1! Standard deviations are estimated by Scott's method.*
# * Much larger standard deviations will result in comparison with NESD = 0.
end if

If NLESQ <= 1 then
NAUTO = 0! Refine all the variable parameters simultaneously.
NAUTO = 1! Refine incrementally (specify variable parameters in each cycle).
NAUTO = 2! Refine incrementally (automatic; recommended in most cases).
NAUTO = 3! In addition to NAUTO = 2, check convergence to the global min.
NAUTO = 2
# Set NAUTO at 2 usually and at zero near the convergence.

NCYCL = 15: Maximum number of cycles.
CONV = 0.0001: Small positive number used for convergence judgement.
NCONV = 6: Number of cycles used for convergence judgement.

NC = 0: No nonlinear restraints are imposed on geometric parameters.
NC = 1! Nonlinear restraints are imposed on geometric parameters.

TK = 650.0: Penalty parameter.
FINC = 2.0: Factor by which TK is multiplied when TK is increased.
end if

If NLESQ <= 1 and NAUTO = 1 then
# Specify parameters to be refined in each cycle plus '/'.
# In addition to absolute parameter numbers, "label,number/symbol" may be
# used (Refer to user's manual).
Parameters refined in each cycle {
BKGD,1 BKGD,2 BKGD,3 BKGD,4 BKGD,5 BKGD,6 BKGD,7 BKGD,8 BKGD,9 BKGD,10
SCALE,1 /
CELLQ1,1 CELLQ1, 2 CELLQ1,3 CELLQ1,4 CELLQ1,5 CELLQ1,6/
# Place '}' (+ comment) after the last cycle.
} End of inputs for numbers of refinable parameters.
end if

If NLESQ <=1 and NAUTO = 3 then
# Input data for the conjugate-direction method (used to check the
# convergence at a local minimum).
MITER = 4: Maximum number of iterations.
STEP = 0.02: Coefficient to calculate the initial step interval.
ACC = 1.0E-6: Small positive number used for convergence judgement.
end if

If NLESQ = 2 then
MITER = 4: Maximum number of iterations.
STEP = 0.02: Coefficient to calculate the initial step interval.
ACC = 1.0E-6: Small positive number used for convergence judgement.

NC = 0: No nonlinear restraints are imposed on geometric parameters.
NC = 1! Nonlinear restraints are imposed on geometric parameters.

TK = 650.0: Penalty parameter.
end if

If NC = 1 then
# To specify nonlinear restraints, an input file for ORFFE, Filename.xyz,
# must be created by inputting non-zero NDA (described below). Then, ORFFE
# is executed to output Filename.ffe, which is referred to learn serial
# numbers for various interatomic distances and bond angles to enter them
# in addition to their expected values and allowed deviations below.
# If Filename.ffe has already been created, it is not created at all.
# Therefore, note that Filename.ffe must be wasted to make it again.

Ser. No. Exp. value Allowed dev. {
122 1.47 0.01
123 1.54 0.01
178 108.0 3.0

# Place '}' (+ comment) after the last restraint.
} End of nonlinear restrains.
end if

#parameterの収束値をinsファイルに上書きし、次の計算の初期値にするかどうか、の選択。普通はNUPDT=1にしておく。
NUPDT = 0! Variable parameters (ID = 1, 2) in the input file remain unchanged.
NUPDT = 1! Variable parameters (ID = 1, 2) are updated in the packing mode.
NUPDT = 1
# In the case of NUPDT = 1, parameters are updated by inserting two spaces
# between data.

NFR = 0! No file is output for Fourier/D synthesis.
NFR = 1! Filename.hkl for Fourier/D synthesis is output for the first phase.
NFR = 2! Filename.hkl for Fourier/D synthesis is output for the second phase.
NFR = 0

#PRIMA用のinput file.fosを出力する。phase別にだせるみたいだ。
NMEM = 0! No file is output for MEM analysis.
NMEM = 1! Filename.fos for MEM analysis is output for the first phase.
NMEM = 2! Filename.fos for MEM analysis is output for the second phase.
NMEM = 0

NDA = 0! No file is output which store ORFFE data.
NDA = 1! Filename.xyz for MEM analysis is output for the first phase.
NDA = 2! Filename.xyz for MEM analysis is output for the second phase.
NDA = 1
# Filename.xyz is also used for MADEL and ATOMS by converting it with ff2am.

If NFR > 0 then
NPIXAF = 32: Number of pixels along the a axis.
NPIXBF = 32: Number of pixels along the b axis.
NPIXCF = 128: Number of pixels along the c axis.

TSCAT = 232.01: Total number of electrons (X-ray) or sum of b_c (N).
# b_c: coherent scattering length (International Tables, Vol. C, p. 384).
end if

#MEM解析のPRIMA用のinput file.fosのコントロール。
If NMEM > 0 then
# Title (CHARACTER*70) written in *.mem.
TITLE = 'Tl-2223'

LANOM = 0: Calculate esd's from I's without contributions of a.d.
LANOM = 1! Calculate esd's from I's with contributions of a.d.
# esd: estimated standard deviation, I: integrated intensity,
# a.d.: anomalous dispersion

NPIXA = 32: Number of pixels along the a axis.
NPIXB = 32: Number of pixels along the b axis.
NPIXC = 128: Number of pixels along the c axis.

LGR = 0: All the reflections are output independently.
LGR = 1! Reflections overlapped heavily are output by being grouped.

LFOFC = 0: Using calculated F'o' based on Rietveld refinement.
LFOFC = 1! Using Fcal (dependent on the model) in Rietveld refinement.

EPSD = 0.001: Maximum difference in d/Angstrom in grouped reflections.
TSCAT1 = 232.01: Total number of electrons (X-ray diffraction) or
# sum of positive b_c (neutron diffraction).
TSCAT2 = -11.0: Zero (X-ray diffraction) or
# sum of negative b_c (Neutron diffraction).
end if

# A local integer variable used only in If ... then statements.
相の数を指定する変数でRev2以降に登場。単相なら省略しても問題ない。
NPHASE@ = 1: Number of phases.

If NPHASE@ > 1 and NBEAM = 1 then
# Mass attenuation coefficients (cm**2/g) for the real chemical species.
# They are not required with Cu Kalpha or Co Kalpha radiation.

# To learn mass attenuation coefficients for characteristic X rays, refer to
# "International Tables for Crystallography," Vol. C, 3rd ed., ed. by E. Prince,
# Kluwer, Dordrecht (2004), pp. 230-236.

# For example, in the case of Mo Kalpha radiation,
# 1.22 7.97 37.6 49.1
end if

If NPHASE@ > 1 and NBEAM = 2 then
# Mass attenuation coefficients (cm^2/g) for the real chemical species.

# To learn mass attenuation coefficients at the wavelength of XLMDX, refer to
# http://lipro.msl.titech.ac.jp/abcoeff/abcoeff2.html

# For example, if XLMDX is 0.5 Angstroms,
0.508 2.73 13.6 18.1
end if

If NPHASE@ > 1 and NBEAM > 0 then
# Effective radii (micrometers) for NPHASE@ phases
5.0 5.0 5.0
end if

If NDA > 0 then
# Input ORFFE instructions as required and place '}' (+ comment) at the tail.
# Refer to the user's manual for ORFFE instructions used frequently. ORFFE
# instructions must be input with a fixed column format; note not to set input
# data at erroneous positions. If NDA > 0, Filename.xyz is output. This file
# is used as an input file for ORFFE to calculate interatomic distances and bond
# angles. ORFFE instructions in Filename.xyz can be modified and/or added by
# the user.

ORFFE instructions start {
# Note that the formats of ORFFE instructions differ from original ones!
# 1 2 3 4 5 6 7 8
#2345678901234567890123456789012345678901234567890123456789012345678901234567890

# Instruction 201, FORMAT(2I5,15X,I5). Output a list of interatomic distances
# for all the sites. The second number is the number of sites. The third
# integer is 10 X (maximum distance in Angstroms).
# Interatomic distances less than 3.1 angstroms are listed
201 9 31
# Instruction 2, FORMAT(7I5). Calculate a bond angle. Three sets of A and
# 1000*C + S (refer to the output of ORFFE) follow after instruction 2.
} End of ORFFE instructions.
end if



絶対に引用を忘れずに。研究者なら当然ですね。
# Cite the following reference whenever you report scientific results obtained
# with RIETAN-2000:
# F. Izumi and T. Ikeda, Mater. Sci. Forum, 321-324 (2000) 198.
# Giving credit to RIETAN-2000 is fine in the case of abstracts, reports, etc.

絵はがきもわすれずに
# If you like RIETAN-2000, please send me a postcard of your home town.
# Is that too much to ask?

# Fujio IZUMI
# Advanced Materials Laboratory
# National Institute for Materials Science
# 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
# E-mail: IZUMI.Fujio@nims.go.jp

*Quit




ここのTopにもどる。
130.GIF